The factorization of braided Hopf algebras and braided version of the 8th Kaplansky’s conjecture
نویسندگان
چکیده
We obtain the double factorization of braided bialgebras or braided Hopf algebras, give relation among integrals and semisimplicity of braided Hopf algebra and its factors. We find an example which show that the 8th Kaplansky’s conjecture does not hold for braided Hopf algebras.
منابع مشابه
The Factorization of Braided Hopf Algebras
We obtain the double factorization of braided bialgebras or braided Hopf algebras, give relation among integrals and semisimplicity of braided Hopf algebra and its factors.
متن کاملBraided-Lie bialgebras associated to Kac–Moody algebras
Braided-Lie bialgebras have been introduced by Majid, as the Lie versions of Hopf algebras in braided categories. In this paper we extend previous work of Majid and of ours to show that there is a braided-Lie bialgebra associated to each inclusion of Kac–Moody bialgebras. Doing so, we obtain many new examples of infinite-dimensional braided-Lie bialgebras. We analyze further the case of untwist...
متن کاملAlgebras and Hopf Algebras in Braided Categories
This is an introduction for algebraists to the theory of algebras and Hopf algebras in braided categories. Such objects generalise super-algebras and super-Hopf algebras, as well as colour-Lie algebras. Basic facts about braided categories C are recalled, the modules and comodules of Hopf algebras in such categories are studied, the notion of ‘braided-commutative’ or ‘braided-cocommutative’ Hop...
متن کاملSome Topics On Braided Hopf Algebras And Galois Extension in Braided Tensor Categories
Braided Hopf algebras have attracted much attention in both mathematics and mathematical physics (see e.g. [2][4][14][16][17][18][20][23]). The classification of finite dimensional Hopf algebras is interesting and important for their applications (see [1] [24]). Braided Hopf algebras play an important role in the classification of finite-dimensional pointed Hopf algebras (e.g. [1][2] [21]). The...
متن کاملIntegrals for braided Hopf algebras
Let H be a Hopf algebra in a rigid braided monoidal category with split idempotents. We prove the existence of integrals on (in) H characterized by the universal property, employing results about Hopf modules, and show that their common target (source) object IntH is invertible. The fully braided version of Radford’s formula for the fourth power of the antipode is obtained. Connections of integ...
متن کامل